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Tessellations by generating clusters are proposed for the high-

pressure phases BC8 and R8 of silicon. The structures of both

high-pressure phases are represented by the parallel packings

of rods. The latter are stacks of distorted icosahedra, joined by

a common triangular face and flattened out along the

threefold symmetry axis. Along the rod axis there is an

alternation of empty and double-centered icosahedra. The

empty icosahedra are additionally distorted in the cubic BC8

phase by antiparallel rotation about the rod axis, while the

double-centered icosahedra are distorted by that rotation in

the rhombohedral R8 phase. A possible mechanism of the

reversible BC8 $ R8 transformation is proposed as the

rotation about the rod axis of the common triangular face of

the neighboring icosahedra, thus transforming between

distorted and undistorted icosahedra. The graphs of the

generating clusters for both the BC8 and R8 structures are

determined by two subconfigurations of the same construction

of the finite projective geometry.
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1. Introduction

Silicon with the cubic diamond structure (Si-I) transforms into

the �-Sn modification Si-II at high pressure. During depres-

surization the reverse transformation into the cubic diamond

structure does not occur. Instead, the transformation sequence

Si-II ! R8(Si-XII) ! BC8(Si-III) was observed. The meta-

stable phases R8 and BC8 have rhombohedral (space group

R3) and body-centered cubic (space group Ia3) structures,

respectively. A complete description of the high-pressure

phase diagrams of carbon, silicon and germanium can be

found in the review paper by Mujica et al. (2003). The BC8

phase of silicon can exist under ambient pressure conditions,

so heating must be applied for the recovery of the stable cubic

diamond modification.

The difference in the sequence of the phase transformations

between the pressure application and pressure release is due

to the mechanisms of the phase transformations and the

features of the structures of the high-pressure phases. The

structure of the cubic BC8 phase can be described as

composed of 14-vertex clusters, which are a combination of an

octahedron and a hexagonal bipyramid (see Fig. 1). The

sixfold axis of the bipyramid is parallel to one of four threefold

axes of the BC8 crystal structure (Kasper & Richards, 1964;

Crain et al., 1994). The structure of the rhombohedral R8

phase can be described as composed of 14-vertex clusters with

an inner edge. The inner edge forms by the movement of two

atoms in opposing directions along the threefold axis (the

opposite sixfold vertices of the hexagonal bipyramid in Fig. 1)

into the interior of a cluster. This opposing movement along

the threefold axis was regarded as the mechanism of the BC



$ R8 phase transformation by Crain et al. (1994) and

Dmitrienko & Kléman (1999). This transformation between

two metastable phases is reversible with pressure.

Actually, this scenario of the BC $ R8 phase transforma-

tion through one-dimensional atomic movements cannot

describe all the features of this transformation. There are four

non-intersecting threefold symmetry axes in the space group

Ia3 of the BC8 phase, hence the atomic jumps along four

different threefold axes have equal probabilities. These atomic

jumps along different threefold axes must be correlated in

space to form a finite volume of the new R8 phase. However,

the mechanism based on one-dimensional atomic movement

does not take into account this correlation.

Moreover, even if the atoms move along only one of the

four threefold axis this mechanism does not describe the

reconstruction of the whole three-dimensional structure

during the BC $ R8 phase transformation. Each one of the

two moving vertices of the hexagonal bipyramid in Fig. 1 is

shared by three hexacycles of a given cluster. The tessellation

of the BC8 crystal space into 14-vertex clusters supposes the

joining of clusters along common hexacycles in such a way that

a sixfold vertex of the bipyramid (of a given cluster) is shared

by four 14-vertex clusters. Thus, opposite atomic displace-

ments along one threefold axis gives rise to not only atomic

penetration inside the empty 14-vertex cluster, but it also

changes the structure of the other clusters sharing the hexa-

cycles with the given cluster. The displaced atoms also belong

to the basement of the hexagonal bipyramid and vice versa,

the parallel displacement of the sixfold vertices of the 14-

vertex clusters neighboring the given cluster is a displacement

of the basement vertices of the given cluster at the same time.

In other words, the model proposed by Crain et al. (1994) and

Dmitrienko & Kléman (1999) does not describe all the

symmetry features of the BC$ R8 phase transformation.

Space-group symmetry is not able to describe all these

symmetry features, because in general various tessellations

into various polyhedra would correspond to the same orbit of

the space group. The fundamental insufficiency of space-group

symmetry in providing a complete description of the crystal

structure tessellation was demonstrated by Delgado Friedrichs

et al. (1999) with the utilization of constructions of the alge-

braic geometry. The existence of other tessellations of the BC8

structure besides the above-described tessellation onto the 14-

vertex clusters, and the fact that other tessellations could

describe all the indicated symmetry features of the BC$R8

phase transformation, has been suggested. The present paper

reports a new structure model which completely describes the

symmetry features of this transformation. The model is based

on alternative tessellations for the BC8 and R8 phases that

were obtained by the methods of algebraic (finite projective)

geometry. A similar approach has been used for the descrip-

tion of polymorphic transformations in iron (Kraposhin et al.,

2002) and titanium (Kraposhin et al., 2006), and for the

description of the metal melting (Kraposhin et al., 2007).

2. A generating cluster and the tessellation of the BC8
structure into rods

The determination of a tessellation requires the determination

of generating polyhedra for this tessellation. A 14-vertex

cluster has been described, i.e. the numbers of vertices, edges

and faces have been given, but this does not uniquely define

the cluster as the numbers of vertices, edges and faces can be

equal for two polyhedra, with a different number of edges

meeting at one vertex.

To define a polyhedron means to define its graph, i.e. the set

of vertices and edges connecting these vertices. In the

framework of a space group theory the 14-vertex cluster of the

BC8 structure cannot be determined, since 7 is not an order of

the point crystallographic group. However, it is known that the

cubic diamond structure with the space group Fd3m can be

tessellated onto 14-vertex non-convex parallelohedra

(O’Keeffe, 1999). This 14-vertex cluster is derived from the

construction of projective geometry in the Appendix. It is not

the unit cell, but it generates the cubic diamond structure by

parallel translations along three directions in space. Thus, it is

a translationally equivalent fragment of the diamond struc-

ture, although the point subgroups of the Fd3m space group

do not determine this 14-vertex cluster.

This example shows that the unit cell does not give a full

description of the given structure. A complete symmetry

description of the structure is determined not by the orbits of

the space group, but by the joining of polyhedra. This joining

of polyhedra is determined uniquely by the single construction

of the algebraic geometry. Graphs of some polyhedra are most

conveniently represented within the language of the theory of

configuration. A summary of the concepts and notations of the

theory of configurations is given in the Appendix (see also

Kárteszi, 1976).
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Figure 1
Generating cluster for the crystalline structure BC8 with 14 vertices as an
octahedron and a hexagonal bipyramid join with a common triad axis.
Light vertices with the numbers 1, 2, 7, 4, 5 and 6 belong to the
octahedron, black vertices with the numbers 1, 5, 3, 2, 6, 8, 4 and 7 belong
to the hexagonal bipyramid. Vertices 4 and 7 are situated on the triad axis.
The derivation of the cluster from the constructions of projective
geometry is described in the Appendix.



It was shown recently by Talis (2002a,b) that 14-vertex

clusters of the cubic diamond structure and the BC8 structure

are the Euclidian realisations of the constructions of finite

projective geometry. A procedure for the derivation of

generating clusters for diamond-like structures from the

constructions of projective geometry is also given in the

Appendix.

Delineation of this 14-vertex cluster in the unit cell of the

BC8 structure is shown in Fig. 2. The cubic BC8 structure has

four threefold axes, however, the 14-vertex cluster has only

one threefold symmetry axis and also this cluster is not a

parallelohedron, i.e. it cannot serve as a translationally

equivalent part of the BC8 structure. The BC8 structure can

then be tessellated onto rods containing 14-vertex clusters.

The symmetry group of each rod is p32, where p is the one-

dimensional group of translations along h111i. Since the 14-

vertex clusters belonging to one rod are isolated from each

other, another cluster is generated between two neighboring

14-vertex clusters and one obtains a rod consisting of alter-

nating clusters of two types (Fig. 3). One type of cluster is the

14-vertex cluster (lighter shading in Fig. 3). Two vertices of this

cluster belonging to the threefold axis of the cubic structure

penetrate into the interior of two neighboring clusters of the

other type (the dark cluster in Fig. 3). So, this cluster contains

an inner edge connecting two vertices situated on the three-

fold axis, which also has 14 vertices. Two neighboring clusters

of different types have a common triangular face which is

normal to h111i (the triangular face of the octahedron in Fig.

1).

These rods formed by two different clusters are not isolated

from each other. Actually they have common vertices with

similar parallel rods, and parallel packing of these rods

describes the BC8 crystal structure (Fig. 4). The rod of clusters

now serves as the translationally equivalent part of the

structure.

3. Icosahedral clusters in the BC8 structure

Delineation of the bicapped icosahedron in the empty 14-

vertex cluster can also be described within the theory of

configurations (see the Appendix). The icosahedron is

distorted by compression along its threefold symmetry axis

and by rotation of six vertices on 36.650 about the h111i

direction. As a result of this deformation the icosahedral

symmetry is lowered towards �33. The double-centered icosa-

hedron (the icosahedron having an inner edge, see Fig. 5b) has

the higher symmetry �33m.

The centered icosahedron is rotated relative to the empty

icosahedron by 60� since they share a common face.

Congruent tetrahedral holes arise between the rods. The

centers of that tetrahedra belong to a single orbit of the space

group Ia3. Thus, the BC8 structure determines the tessellation

of the three-dimensional Euclidian space onto two types of

icosahedra and one tetrahedron. It can be easily seen that the

crystal structures of both BC8 and R8 can be represented by

topologically equivalent tesselations. Indeed, when the reverse

rotation of the triangular faces {111} of the empty icosahedra

about their normal occurs, thus restoring their mirror planes,

the respective rotation occurs simultaneously in double-

centered icosahedra of the same rod, thus eliminating mirror

planes in these icosahedra. This rotation which occurs in all

icosahedra of a given rod converts the BC8 structure into the

structure of the rhombohedral R8 phase, which is the repre-

sentation of the same joining of rods formed by empty and

double-centered icosahedra. After rotation the R8 structure is

obtained, in which the empty icosahedron in the R8 phase
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Figure 2
Projections of the cubic BC8 structure along twofold and threefold
symmetry axes. A delineation of the unit cell and 14-vertex cluster is
shown.

Figure 3
The translationally equivalent rod in the BC8 structure is the alternate
stacking of empty (light) and double-centered (dark) 14-vertex clusters
along the h111i direction. Note the tetrahedral cap on the empty light
cluster. The second cap of the same cluster is on the opposite triangular
{111} face, i.e. it penetrates into the interior of the neighboring dark
cluster.



shows �33m symmetry while the centered icosahedron actually

has �33 symmetry. In other words, with the absence of centered

atoms inside icosahedra, structures of BC8 and R8 phases are

not distinguishable (not taking into account atomic relaxa-

tions). The mathematical foundation for the similarity of these

two structures is based on the fact that the crystal structures of

BC8 and R8 phases can be generated by repeating the clusters

having identical graphs which are determined by two

subconfigurations of the same finite projective geometry.

The approximate Miller indices for the faces of both 14-

vertex clusters are shown in Fig. 5. Twelve faces of the empty

two-capped icosahedron have indices of the types {853} and

{532}, i.e. in correspondence with the Fibonacci series (Fig. 5a).

The same indices describe 24 out of the 30 faces of a tria-

contahedron in a cubic setting, i.e. when the remaining six

faces are {100}. Six faces of the icosahedron also have {100}

indices. Miller indices of the inclined faces of the tetrahedral

cap (not shown) are {964}.

The present model for the BC8–R8 transformation involves

the rotation of a common triangular face of two neighboring

icosahedra of a single rod. It implies the displacement of

atoms belonging to neighboring rods, i.e. it defines the struc-

tural deformations governing the phase transition.

According to Dmitrienko & Kléman (1999), the rhombo-

hedral R8 structure has one feature, namely the presence of

five-membered atomic rings. Five-membered rings in the BC8

and R8 phases are shown in Figs. 6 and 7. The five-membered

ring of the shortest interatomic bonds in the R8 phase includes

the inner edge of a 14-vertex cluster. The respective five-

membered atomic complex of the BC8 phase includes an edge

with a length approximately 1.5 times larger than the other

four edges. Rotation of the triangular face about the threefold

symmetry axis ensures an equalization of bond lengths in this

complex, thus converting the BC8 phase into the R8 phase.

The proposed tesselation of both structures into rods is in

accordance with the concept of O’Keeffe & Andersson (1977)

which considers a crystal as the stacking of congruent infinite

cylinders (rods). The linear transport theorem can be regarded

as the mathematical foundation for this rod concept. In

accordance with this theorem only linear (rod-like) substruc-

tures of n-dimensional constructions (n > 3) can be mapped

onto the three-dimensional Euclidian space E3 with minimal

distortions (Kléman, 1989). In the {3, 3, 5} polytope (a four-

dimensional counterpart of an icosahedron) each vertex is the

center of a regular icosahedron. As a result, the {3, 3, 5}

polytope contains the icosahedra joined in a face-to-face mode

along the common symmetry axis 61. While mapping onto E3,
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Figure 5
(a) The condition for the equality of edge lengths is violated in the BC8
crystal structure, hence the 14-vertex cluster can be represented as the
empty icosahedron flattened out along h111i with two tetrahedral caps on
the opposite parallel {111} faces (not shown here, see Fig. 3). The
symmetry of the icosahedron is �33. Approximate Miller indices are
inscribed on the respective faces. (b) An icosahedron with the inner edge
and �33m symmetry. Approximate Miller indices are shown on the
respective faces. The icosahedron is centered by the vertices of
tetrahedral caps from two neighboring empty icosahedra, as shown in
(a). Two centering atoms form the inner edge. The empty and centered
icosahedra share the common {111} face.

Figure 4
Parallel dense packing of translationally equivalent rods generates the
crystal structure of the BC8 phase: views along (a) the normal and (b)
parallel to the [111] axis.



this icosahedral joining from {3, 3, 5} determines a rod formed

by centered icosahedra with the common threefold axis. The

rod in the BC8 structure will be congruent with the rod from

{3, 3, 5} when all icosahedra in the BC8 structure become

regular and single centered.

4. Conclusion

(i) Tessellations onto generating clusters have been derived

for the high-pressure BC8 and R8 phases of silicon. The

structures of both high-pressure phases were represented as

parallel packings of rods that are made of icosahedra with

common triangular faces. The icosahedra are flattened out

along the threefold symmetry axis which is normal to the

common triangular face. There is an alternation of empty and

double-centered icosahedra along the rod axis, and each

second icosahedron is distorted by antiparallel rotation about

the rod axis.

(ii) The empty icosahedra are twisted in the structure of the

cubic BC8 phase, and the double-centered icosahedra are

twisted in the structure of the rhombohedral R8 phase. A

possible mechanism of the reversible BC8 $ R8 transfor-

mation is proposed as the rotation of the common triangular

face of the neighboring icosahedra. The rotation of the

common triangular face destroys the mirror plane in one

icosahedron and restores the mirror plane in the other.

(iii) Graphs of the generating clusters for both BC8 and R8

structures are determined by the same construction of the

finite projective geometry. The experimentally observed

reversibility of mutual transformations between high-pressure

phases BC8 and R8 can be determined by the relationship

between generating clusters.

APPENDIX A
A structure containing n points P1, P2, . . . , Pn and n straight

lines l1, l2, . . . ln, in which q + 1 straight lines consist of q + 1

points running through each point, is said to be a finite

projective plane PG(2,q) of the order q. The line li can be

broken (polygonal), and the relation n = q2 + q + 1 is fulfilled

between n and q. The projective plane PG(2,q) is defined

uniquely by its incidence table which is a square table n � n

with columns P1, P2, . . . , Pn named as points and rows l1, l2,

. . . ln as straight lines. The incidence of point Pi and straight

line lj is designated by filling a cell ij of this table (by an

incidence sign); an empty cell signifies the absence of inci-

dence. A configuration can be used as a graphic model of the

finite projective plane which is a set of m points and n straight

lines (planes), in which c straight lines (planes) run through

each point, while d points belong to each straight line (plane).

The configuration is designated as (mc, nd). If m = n the

configuration is self-dual and designated as {nd}. The config-

uration is defined by its incidence table �(mc, nd) consisting of

m rows and n columns, and containing mc = nd incidence

signs. The configuration can be realised in different spaces

(both finite and infinite). The configuration must be geome-

trical so that it can be realised on any projective plane. The

geometrical configuration means that its incidence table �(mc,

nd) contains an empty cell in its sub-table 2� 2. This condition

ensures the intersection of two different straight lines of the

projective plane at only one point.
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Figure 6
Delineation of the fivefold cycle in the cubic BC8 structure (shown in
red). Numbers show the edge length in Å. It can be seen that one edge is
1.5 times longer compared with the other edges, i.e. this edge is not the
shortest bond in the BC8 structure.

Figure 7
Delineation of the fivefold cycle in the rhombohedral R8 structure
(shown in red). Numbers show the edge length in Å. The alternating
empty and double-centered icosahedra along the triad axis are also
shown. The icosahedron with the inner edge is shown in red.



As an example, the finite projective plane PG(2,2) or the

self-dual Fano configuration {73} is shown in Fig. 8 together

with its incidence table. Parallel straight lines l2 and l5, l3 and l6,

and l7 and l4, respectively, intersect at ideal points 0, 1, 1,

which form an infinitely distant straight line l1 (a dotted line).

In projective geometry an infinite Euclidian plane is comple-

mented with an infinitely distant straight line, and parallel

straight lines belonging to that Euclidian plane intersect on

this distant straight line. For projective geometry the duality

principle holds: if the words ‘point’ and ‘straight line’ are

interchanged everywhere, all definitions and theorems will

remain unchanged. This principle permits using the incidence

table of PG(2,q) to construct a graph as a model for this

PG(2,q). For that, points P1, P2 . . . , Pn, and straight lines l1,

l2 . . . , ln, of PG(2,q) are taken to be the white and black

vertices of the graph, and those and only those pairs from one

light and one black vertex will be connected by the graph edge,

for which there is an incidence sign at the intersection of the

respective row li and column Pj. Skipping of the graph edge or

substituting the filled incidence sign by the unfilled incidence

sign means an extermination of the respective segments of the

straight line. The incidence table in Fig. 8(b) contains three

unfilled circles substituting incidence signs. It means the

extermination segments of straight lines l2, l3, l4 in between
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Figure 8
(a) Graphic model of the finite projective plane PG(2,2) or autodual Fano configuration {73}. Parallel straight lines l2, l5; l3, l6; l7, l4 intersect at ideal points
0, 1, 1, forming an infinitely distant straight line. (b) The incidence table for PG(2,2). A removal of three incidence signs (empty circles) means the
annihilation of the line segments l2, l3, l4 in between P1 and P2, P3, P4. The parallel straight lines l2 and l5, l4 and l7, l3 and l6 do not intersect at ideal
(infinitely distant) points P2, P4, P3. (c) Graph of the 14-vertices cluster of the diamond structure as the realisation of the configuration mapped by the
incidence table (b).

Figure 9
(a) An irregular {93}3 configuration and (b) its incidence table. The sub-table 7 � 7 (shown by thick lines) defines a ‘faulted’ diamond cluster, which
coincides with the core of a screw dislocation in the diamond structure. Primed numbers in (a) designate straight lines corresponding to the black vertices
of the cluster.



points P1 and P2, P3, P4. Then parallel straight lines l2 and l5, l4
and l7, and l3 and l6 will not intersect in ideal (infinitely distant)

points P2, P4, P3. In other words, the extermination of three

incidence signs corresponds to passing from projective to

Euclidian geometry (Euclidian mapping of the projective

plane PG(2,q).

The construction of the bichromatic graph from white and

black points by using the incidence table generates a cluster

with 14 vertices (Fig. 8c). This cluster is the non-convex

parallelohedron representing the joining of seven non-convex

hexacycles in the chair conformation. While translated by the

f.c.c. lattice this 14-vertex cluster generates a diamond struc-

ture.

In a similar way, the generating cluster of the BC8 structure

can be derived from a so-called irregular self-dual configura-

tion {93}3 (Fig. 9a). The sub-table 7 � 7 can be delineated in

the incidence table of this configuration (Fig. 9b). The graph of

this sub-table (Fig. 9c) determines a ‘faulted’ 14-vertex

diamond cluster. When translating this cluster along the h110i

direction of the diamond structure, a linear substructure is

generated coinciding exactly with the core of a screw dislo-

cation in the diamond structure (Hornstra, 1958). In such a

sense the ‘faulted’ cluster shown in Fig. 9(c) can be regarded as

the generating cluster of the screw dislocation in the diamond

structure. Displacement of column 3 beyond column 9 gives

the isomorphic incidence table (Fig. 10a).

Now, a sub-table 8 � 6 is delineated in this transformed

isomorphic table. This 8� 6 incidence table defines a non-self-

dual configuration which can be considered as an intersection

between the {93}3 configuration and the (64,83) configuration.

The incidence table of the (64,83) configuration is shown in Fig.

10(b). Unfilled circles in this table designate the incidence

signs which are absent in the incidence table of Fig. 10(a). The

configuration (64,83) defines (by both unfilled and filled inci-

dence signs) the graph of a rhombic dodecahedron, i.e. in this

cluster there are two kinds of vertices: six vertices have four

edges meeting at them, and eight vertices have three edges

meeting at them.

On skipping six edges of the rhombic dodecahedron

(unfilled circles in the table correspond to skipped edges) a

graph i was obtained representing the joining of two graphs: a

hexagonal bipyramid and an octahedron, both having the

common triad axis (Fig. 10c). By superimposing the condition

of the maximal possible equality of edge lengths and angles

between them, the graph obtained determines the generating

cluster of the BC8 structure.

It can easily be shown that a delineation of the two-capped

icosahedron in the 14-vertex generating cluster of the BC8

structure is determined by the incidence table for the

subconfiguration from the (64,83) configuration, which in turn

determines the whole cluster. Indeed, three incidence signs are

situated only in the fourth and seventh rows of this table,

therefore they single out two vertices positioned on the triad

axis. The remaining 12 vertices are the vertices of the icosa-

hedron, and between the edges of this icosahedron there are

six edges of the rhombic dodecahedron which are omitted in

Fig. 10.
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Figure 10
(a) Transformation of the incidence table of the {93}3 configuration results in the generating cluster of the BC8 structure. The third column is displaced
beyond the ninth column, so the isomorphic incidence table is formed. The sub-table 6� 8 is delineated by thick lines; this 6� 8 sub-table determines the
generating cluster of the BC8 structure. (b) The incidence table of the non-geometrical (64, 83) configuration determines the graph of a rhombic
dodecahedron. After skipping six edges (unfilled circles), this table coincides with the sub-table 6 � 8 in (a); (c) The generating cluster of the BC8
structure is determined by the intersection of incidence tables for {93}3 (a) and (64, 83) (b) configurations. Dotted lines are the edges of the incidence
graph for the (64, 83) configuration (edges of the rhombic dodecahedron) which correspond to the unfilled circles in the incidence table in (b).
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Kléman, M. (1989). Adv. Phys. 38, 605–667.

Kraposhin, V. S., Talis, A. L. & Dubois, J.-M. (2002). J. Phys. Condens.
Matter, 14, 8987–8996.

Kraposhin, V. S., Talis, A. L. & Samoylovitch, M. I. (2007). J. Non-
Cryst. Solids, 353, 3279–3284.

Kraposhin, V. S., Talis, A. L. & Wang, Y. J. (2006). Mater. Sci. Eng. A,
438–440, 85–89.
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